「Big Data Analytics Platform Workshop」巨量資料分析運算平台課程

主辦單位: 
教育部行動寬頻網路與應用-行動智慧聯網聯盟中心計畫
國立交通大學電機系與交大-IBM 智慧物聯網與巨量資料研發中心
協辦單位: 
交通大學電機工程系所
交通大學資訊工程系所
電子與資訊中心
指導單位:: 
教育部資訊及科技教育司
時間:  2017/07/03(一)~ 2017/07/07(五)
地點:  國立交通大學 工程四館713室
講者:
Dr. Shu-Ping Chang ( IBM T.J. Watson Research Center ) (IEEE Fellow)
Dr. Jin-Jun Xiong ( IBM T.J. Watson Research Center )
王蒞君教授(交大電機系)
帥宏翰助理教授(交大電機系)
報名資訊:
  1. 費 用:
    1. 學生1000元/人
    2. 業界人士 3000/人
    3. 中心會員 3人免費參加
    4. (費用含紙本講義、午餐及茶水)
  2. 共30人,依完成報名順序錄取 (完成繳費者始完成報名程序)
  3. 報名網址:https://docs.google.com/forms/d/e/1FAIpQLScAgwJD8LUR3iyaxCq6QBjWxH3ySAjChF0MhgDYKI_CaMXrBw/viewform
摘要:

二十一世紀是個資訊爆炸的世代,身處科技日新月異、瞬息萬變的大千世界,我們要如何因應如此大量的資訊,進一步分析並做出決策?為了解決與日俱增雜亂無章的大量資訊,新興的運算模式-大數據分析的資料革命應運而生,此技術強調能快速分析龐雜大量的訊息,並提供即時可靠的決策依據,甚者智慧物聯網將科技融入生活,正悄悄改變我們的生活方式,一步步邁入智能化的生活模式。緣此,本課程特邀IBM T.J.Watson Research Center的研究人員前來講授巨量資料分析的運算技術,期許學員能更深入瞭解此資料分析的運作與應用。

流程:
Monday, July 3, 2017
Morning Streams Computing Introduction
Streams Architecture and Components
Streams Installation
Streams Studio
Afternoon Exercise Source Sink
Streams Development Process
Exercise Hello World
SPL Programming
Adapter Operators
Exercise MetricsSink
Tuesday, July 4, 2017
Morning Standard Toolkit
Exercise Split (Mixed Mode)Utilities & Relational Operators
Exercise Punctor
Windowing and Join
Exercise Join
Afternoon Punctuation, Aggregation and Sorting
Exercise Sort
Exercise Aggregate,Timing and Coordination
Exercise Barrier
Exercise Gate
Exercise Deduplicate
Wednesday, July 5, 2017
Morning Hadoop – open-source software for reliable, scalable, distributed computing.
Spark – A fast and general compute engine for Hadoop data.
Afternoon Lists, Sets and Maps
Exercise Dynamic Filter
Nodes and Partitions
Exercise,SPL Config
Functions
Exercise SPL built in functions
Exercise JAVA Native Function
Evening Take Home Exercise
Thursday, July 6, 2017
Morning Homework Discussion
Toolkits
Exercise TCP Source/Sink
Exercise InetSource Operator (Specialized Toolkit)
Exercise ODBC adapters for DB2
Afternoon JAVA Primitive Operator Development
Exercise Java OP
Time Series Introduction
Use cases
Example implementation: Anomaly Detection, Forecasting
Friday, July 7, 2017
Morning Research and Development (R&D) Trends in the Big data Era
Machine and Deep Learning
Afternoon 行動運算新紀元 – 巨量資料時代
New Horizon for Mobile Computing – The Big Data Era