「Big Data Analytics Platform Workshop」巨量資料分析運算平台課程
主辦單位:
教育部行動寬頻網路與應用-行動智慧聯網聯盟中心計畫
國立交通大學電機系與交大-IBM 智慧物聯網與巨量資料研發中心
協辦單位:
交通大學電機工程系所
交通大學資訊工程系所
電子與資訊中心
指導單位::
教育部資訊及科技教育司
時間: 2017/07/03(一)~ 2017/07/07(五)
地點: 國立交通大學 工程四館713室
講者:
Dr. Shu-Ping Chang ( IBM T.J. Watson Research Center ) (IEEE Fellow)
Dr. Jin-Jun Xiong ( IBM T.J. Watson Research Center )
王蒞君教授(交大電機系)
帥宏翰助理教授(交大電機系)
報名資訊:
- 費 用:
- 學生1000元/人
- 業界人士 3000/人
- 中心會員 3人免費參加 (費用含紙本講義、午餐及茶水)
- 共30人,依完成報名順序錄取 (完成繳費者始完成報名程序)
- 報名網址:https://docs.google.com/forms/d/e/1FAIpQLScAgwJD8LUR3iyaxCq6QBjWxH3ySAjChF0MhgDYKI_CaMXrBw/viewform
摘要:
二十一世紀是個資訊爆炸的世代,身處科技日新月異、瞬息萬變的大千世界,我們要如何因應如此大量的資訊,進一步分析並做出決策?為了解決與日俱增雜亂無章的大量資訊,新興的運算模式-大數據分析的資料革命應運而生,此技術強調能快速分析龐雜大量的訊息,並提供即時可靠的決策依據,甚者智慧物聯網將科技融入生活,正悄悄改變我們的生活方式,一步步邁入智能化的生活模式。緣此,本課程特邀IBM T.J.Watson Research Center的研究人員前來講授巨量資料分析的運算技術,期許學員能更深入瞭解此資料分析的運作與應用。
流程:
Monday, July 3, 2017 | |
---|---|
Morning | Streams Computing Introduction Streams Architecture and Components Streams Installation Streams Studio |
Afternoon | Exercise Source Sink Streams Development Process Exercise Hello World SPL Programming Adapter Operators Exercise MetricsSink |
Tuesday, July 4, 2017 | |
Morning | Standard Toolkit Exercise Split (Mixed Mode)Utilities & Relational Operators Exercise Punctor Windowing and Join Exercise Join |
Afternoon | Punctuation, Aggregation and Sorting Exercise Sort Exercise Aggregate,Timing and Coordination Exercise Barrier Exercise Gate Exercise Deduplicate |
Wednesday, July 5, 2017 | |
Morning | Hadoop – open-source software for reliable, scalable, distributed computing. Spark – A fast and general compute engine for Hadoop data. |
Afternoon | Lists, Sets and Maps Exercise Dynamic Filter Nodes and Partitions Exercise,SPL Config Functions Exercise SPL built in functions Exercise JAVA Native Function |
Evening | Take Home Exercise |
Thursday, July 6, 2017 | |
Morning | Homework Discussion Toolkits Exercise TCP Source/Sink Exercise InetSource Operator (Specialized Toolkit) Exercise ODBC adapters for DB2 |
Afternoon | JAVA Primitive Operator Development Exercise Java OP Time Series Introduction Use cases Example implementation: Anomaly Detection, Forecasting |
Friday, July 7, 2017 | |
Morning | Research and Development (R&D) Trends in the Big data Era Machine and Deep Learning |
Afternoon | 行動運算新紀元 – 巨量資料時代 New Horizon for Mobile Computing – The Big Data Era |